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Abstract. Dynamics of the torque-free angular motion of gyrostat-satellites and dual-spin 
spacecraft are examined. New analytical solutions for the angular moment components are 
obtained in terms of Jacobi elliptic functions. Also analytical solutions for Euler’s angles are 
found. These solutions can be used for a dual-spin spacecraft and gyrostat-satellites attitude 
dynamics analysis and synthesis. 
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Introduction 

 

Study of the angular motion of rigid bodies and attitude dynamics of gyrostat-satellites (GS) 
and dual-spin spacecraft (DSSC) still remains one of the main research areas of modern 
mechanics and spaceflight dynamics. This research area connected with classical tasks of angular 
rigid body motion, gyrostats and coaxial bodies’ systems motion [1-6]. Regular and irregular 
(chaotic) motion modes, attitude control and reorientation of gyrostats and coaxial spacecraft are 
being examined by many scientists [7-40].  

Classical investigation results of rigid body and gyrostats motion have been presented in 
many works, for example, in [1-7]. In [8, 9] important aspects of torque-free motion dynamics of 
gyrostats were studied.  

Analysis of angular motion of coaxial bodies and dual-spin spacecraft was conducted, for 
example, in [10-20] including perturbed cases of motion. In works [17-19] research results for 
DSSC motion at rotor-body spinup realization (a momentum transfer maneuver) were collected. 
In [20-33] compound and chaotic modes of motion of gyrostats and DSSC at absence/presence 
of control were considered. 

In work [34] angular motion of variable mass dual-spin spacecraft was investigated. 
Corresponded research results showed non-trivial changes of DSSC angular motion at the 
variability of mass–inertia parameters. Also the qualitative method for phase space analysis 
based on the evaluation of a phase trajectory curvature was developed – this method can be used 
for the synthesis of realization conditions of special motion modes (for example, monotone 
decrease/increase of nutation angle).  

������������������������������������������������������������
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In paper [35] a chaotic motion of gyrostats in resistant environment was considered with the 
help of well-known dynamical systems with strange attractors: Lorenz, Rössler, Newton–Leipnik 
and Sprott systems. Cases for perturbed gyrostats motion with variable periodical inertia 
moments and with periodical internal rotor relative angular moment was investigated.  

In [36] Heteroclinic dynamics of the torque-free dual-spin spacecraft was examined, and 
analytical solutions for heteroclinic orbits, corresponded to the polhodes-separatrices in the space 
of the angular moment components, was obtained. Analysis of possibility of the motion 
chaotization with the help of Melnikov method was conducted on the base of these analytical 
heteroclinic solutions.  

In works [37-40] interesting recent results for gyrostat’s type systems can be found. These 
results connected with investigation of new aspects of stabilization and synchronization of 
electro-mechanical gyrostat systems (in regular and chaotic cases), dynamics of gyrostats in the 
gravitational field, and gyrostats' reorientation problems. 

In the framework of gyrostats dynamics we need to emphasize the analytical study problem. 
Analytical exact solutions for gyrostats motion have an important value as intrinsic mathematical 
and mechanical problem, and also these results may be considered as unperturbed generating 
dependences at investigation of the perturbed motion's dynamics at presence of small external 
and internal torques, such as gravity gradient influence, geomagnetic field torques, aerodynamic 
moments, interactions of DSSC bodies, etc.  

The main analytical investigations and exact solutions for the parameters of balanced 
gyrostat motion are presented in works [1-4, 7]; also explicit solution for gyrostat was recently 
found in [8]. Obtaining of analytical results for non-Kelvin-type gyrostats and dual-spin 
spacecraft motion was considered in [9-12]. Here particularly we need to underscore the exact 
explicit solutions for DSSC angular motion presented in [10] and replicated in [11, 12] – these 
important solutions were obtained for the Andoyer–Deprit canonical variables in closed form in 
Jacobi elliptic functions.  

So, in this paper on the base of Euler’s dynamical equations we obtain a new form of the 
exact explicit solutions for the coaxial system and DSSC in the space of angular velocity 
components.  

The paper is organized as follows. In section 1 the mathematical model of the coaxial bodies 
system, GS and DSSC is presented. In section 2 the explicit analytical solutions for the angular 
velocity (angular moment) components are obtained. In section 3 analytical solutions for Euler’s 
angles are found. 

1. The motion equations of the coaxial bodies, GS and DSSC 

 

Let us consider the torques free attitude dynamics of the coaxial bodies, GS and DSSC 
which was started in [36]. GS and DSSC consist of two coaxial bodies (body #1 is a rotor; body 
#2 is a main/core/carrier body). We assume that the main body has triaxial inertia tensor and the 
rotor is dynamically symmetrical body. Let us introduce following coordinate frames (Fig.1): 
OXYZ is the inertial system of coordinates, Ox2y2z2 – the connected principal system of 
coordinates of the carrier body, and Ox1y1z1 – the connected principal system of coordinates of 
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the rotor body. The axes Oz1 and Oz2 of the connected systems are identical to the common 
rotation axis of the coaxial bodies. 

The system motion can be described on the base of Euler dynamical equations [3, 4], and 
with the help of Andoyer–Deprit canonical variables [13, 14]. The dynamical Euler’s equation of 
the torque-free motion of the coaxial system can be written, for example [34, 36], as: 
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or in the following form: 
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where � �, ,p q r  are components of the carrier body's angular velocity which represented in 
projections onto the axes of the Ox2y2z2 frame; � 	  the rotor angular velocity relatively the 
carrier body; � �2 2 2 2, ,diag A B C
I  is the triaxial inertia tensor of the carrier body in the 

connected frame Ox2y2z2; � �1 1 1 1, ,diag A A C
I  is the inertia tensor of the dynamically 
symmetrical rotor in the connected frame Ox1y1z1; 1 2 ,A A A
 �  1 2 ,B A B
 �  1 2C C C
 �  are the 
main inertia moments of the coaxial bodies system in the frame Ox2y2z2 (including rotor); M� 	  
is the internal torque of the coaxial bodies interaction (assume 0M� 
 ); � �1C r �� 
 � 	  the 
longitudinal angular moment of the rotor along Oz1; 

11 zC h� 
 	  the rotor relative angular 
moment in the carrier body frame Ox2y2z2. We assume following conditions 
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 �  
Also we need to add the well-known kinematical equations for Euler's angles: 
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Here we note that the equation system (1.1) corresponds to the torque-free motion of the 
coaxial bodies and the unbalanced gyrostat with non-constant relative angular moment of rotor (

1 1 const,zh C�
 � even if 0M� 
 ). In this case results of analysis for Kelvin-type gyrostats [1-4, 
7-8] are not applicable. 

Also we can use the Hamiltonian form of equations in the Andoyer–Deprit canonical 
variables. The Andoyer–Deprit variables [5, 9, 10, 33, 36] can be expressed with the help of the 
coaxial system's angular moment K (fig.1): 
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The system Hamiltonian [9, 33, 36] in the Andoyer–Deprit phase space takes the form: 
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where T – is the system kinetic energy; 1H� 	 is the small perturbed part of the Hamiltonian, 
connected with such disturbances as gravity gradient, geomagnetic field etc. and corresponded 
small potentials. In this research we focus only on the unperturbed � �0� 
  generating solutions 
obtaining and, therefore, effects of small perturbations can be eliminated.  

Using the Hamiltonian (1.5), we can write corresponded dynamical system  
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where � � � �1 1
1 2 1 2 .A B A A# 	 	
 � 	 �   

  
 

Fig.1. The DSSC (coaxial bodies system) and the coordinate frames 
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As we can see, the system (1.6) consists of four subsystems for every pair of canonical Andoyer–
Deprit variables � � � � � � � �� �2 2 3 3, , , , , , ,l L I I� � � � . The subsystem � �,l L  is independent and can 
be integrated separately.  This integration in elliptical quadratures was performed in paper [10]. 

We need to note that truncation of the subsystems � � � � � �2 2 3 3, , , , ,I I� � � �  inevitably leads to 

information loss. For example, comparison of the third-order differential equations system (1.2) (
const� 
 ) with the second-order subsystem � �,l L  (1.6) is identical to the comparison of 3D 

geometrical object and its plane projection – for our mechanical task dynamical system orbit 
represents 3D-polhode, and it should be described with the help of three parameters in 3D-space 
{p, q, r} instead of the consideration based on its projection on the Andoyer–Deprit phase plane. 
Therefore, reduction � � � �, , ,p q r l L%  is easily executable, but inverse transformation 

� � � �, , ,l L p q r%  without information loss is impossible (it will be shown at the end of the 

section 2). Moreover, to give complete description of the motion we need to take into account 
such kinematical parameters as Euler's angles. Thus, the full dynamical system corresponds to 
the mechanical system for coaxial bodies (GS, DSSC) with four degree of freedom (4-DOF). 

In the next section we will obtain analytical solutions for angular velocity components of the 
coaxial bodies system. 

2. Explicit analytical solutions for angular moment components  

 The term “polhode” is well-known [3]. The polhode is the fourth-order curve in 3D-space 
(Fig.2) which corresponds to the intersection of a kinetic energy ellipsoid and an angular 
moment ellipsoid, which are defined with the help of the following expressions [3]: 

2
2 2 2

2
1

2Ap Bq C r T
C
�

� � � 
      (2.1) 

� �22 2 2 2 2
2 2A p B q C r K DT� � � � 
 
     (2.2) 

2

2
KD
T


        (2.3) 

We can write polhode equation [3, 36] on the base of expressions (2.1) and (2.2)
combinations. So, multiplication (2.1) by A and deduction (2.2) gives  
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Multiplication (2.1) by C1 and deduction (2.2) gives  
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Multiplication (2.1) by B and deduction (2.2) gives  
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Taking into account perfect square, equation of hyperbolae (on the coordinate plane Opr at 
the Fig.2) follows from (2.6) 
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From expression (2.4) equation of ellipses (on the coordinate plane Oqr (fig.2)) follows  
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Equation (2.7) can be rewritten as 
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From (2.8) we can get  
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With the help of (2.10) we can write 
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where � � � �1 1
2 2B C A C' 	 	
 	 	 	 . 

On the base of (2.11) and (2.9) we can rewrite the second equation (1.2) in the form 
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We can make the change of variables (case 1) 
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Then from (2.13) we obtain  
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Fig.2 Projections and 3D-image of the polhodes ellipsoid

 
Also we can make the following change of variables (case 2) 
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Similar to previous case (case of change (2.13)) from (2.16) expressions (2.14) and (2.15) follow 
again. Thus, for both changes we have interconnected equation 
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It is needed to note differences between initial values corresponded to cases (i=1, 2): 
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Let us rewrite equation (2.17) in the form with differences of squares    

� �
2 2

2 2

M dxdt
ac H Gx b x

a c


 &
( ) ( )

	 � 	* + * +
, - , -

    (2.18) 

Now we make the next change of variables 
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Then we have the following expressions  
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After some transformations with expansion of difference of squares last equation takes the form  
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Now (2.21) can be rewritten 
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Here we should consider two cases of reduction of (2.22) to elliptic integral of the first 
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where index j corresponds to number of reduction case. 
Integration gives us  
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Inversion of elliptic integral gives the explicit analytical solution 
� � � �� �0 0sn ,y t N t t I k� �
 & 	 �! "     (2.25) 

where sn(u,k) is the Jacobi elliptic sine function with classical definition: 
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After inverse transformations we obtain the exact explicit analytical solutions for all 
angular velocity components 
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where  
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Fig. 3 demonstrates the validity of solutions (2.26) - we see comprehensive coincidence of 
the analytical (points) and numerical integration results (lines).  

 

 
Fig.3 Numerical (lines) and analytical (points) integration results 

A2=15; B2=8; C2=6; A1=5; C1=4; p0=5; q0=5; r0=10; 5� 
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It is well-known fact that solutions for gyrostats (coaxial bodies) generalize results for the 

free rigid body in Euler’s case of motion [1-8]. In contrast to [1-8], in this paper the essential 
motion of the coaxial system (DSSC) was investigated without assumption of constancy of the 
gyrostatic moment ( 1 constzh C �
 � ).  

In [10] analytical solutions for DSSC were obtained in terms of Jacobi elliptic functions for 
the Andoyer–Deprit canonical variables. With the help of [10] and based on kinematic 
expressions (1.4) we can also write the dependences � � � � � �� �, ,p t q t r t  as functions of Deprit's 
variable L. In this case expressions shape includes compositions of Jacobi elliptic functions, 
radicals, trigonometric functions and inverse trigonometric functions at the same time – this 
structural complexity connected with information loss at the transformation of 3D-polhodes to 
their 2D-images on the � �,l L 	 plane: 
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  (2.28) 

We additionally note that results (2.28) follow directly from work [10].  
Reduction of the solutions (2.28) to the new form (2.26) by analytical transformations is 

problematically. Vice versa, based on (2.26) we can write simple solutions for Andoyer–Deprit 
variables: 

� � � � � � � �
� �� �

� �
� �� �

2 2 22 2
2 2

; arcsin arccos
Ap t Bq t

L t C r t l t
K C r t K C r t


 � � 
 

	 � � 	 � �

 (2.29) 

3. Explicit analytical solutions for Euler’s angles 

 
Let us consider angular motion of the coaxial system (DSSC) with respect to the initial 

frame OXYZ (Fig.1) in the case when vector of angular moment K is directed along OZ. It 
always can be realized by the changing of coordinate frames. In this case nutation angle (angle 
between OZ and Oz1,2 axes) and intrinsic rotation angle � ��  can be found using classical method 
[3, 5] from expressions 
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2

2 2

sin sin

sin cos

cos

x

y

z

K Ap K

K Bq K

K C r K

� �

� �

�
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�


 
�
� 
 � � 


     (3.1) 

So, taking into account analytical solutions for angular velocity components (2.26) we 
obtain exact solutions for angles 
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� � � � � � � �
� �2cos ; tg

Ap t
t C r t K t

Bq t
� �
 � � 
� �! "    (3.2) 

In considered case � �2 3K I I
 
  with the help of comparison of expressions (3.1) and 
(1.4) we can write the correspondences between Euler and Andoyer–Deprit variables  

2cos ;L I l� �
 
      (3.3) 
 Solutions for precession � ��  and relative rotation angle � ��  follow from the first and the 
fourth equations (1.3) and expressions (3.1) 
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0 0

2 2

0 02 2 2 2
1

( ) ( ) ; ( )
( ) ( )

t t

t t

Ap t Bq tt K dt t r t dt
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/ /   (3.4) 

 
Fig. 4 demonstrates the validity of solution (3.2) for nutation angle � �� ; Fig. 5 shows the 

validity of analytical solution for intrinsic rotation angle � ��  (3.2), for precession angle � ��

(3.4) and for relative rotation angle � ��  (3.4).  We note that all angles (Fig.4-5) were calculated 
in radians. 

 

 
Fig.4 Numerical (lines) and analytical (points) integration results for nutation 

A2=15; B2=8; C2=6; A1=5; C1=4; p0=5; q0=5; r0=10; 5� 
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Fig.5 Numerical (lines) and analytical (points) integration results for  

intrinsic rotation, precession and relative rotation angle 
A2=15; B2=8; C2=6; A1=5; C1=4; p0=5; q0=5; r0=10; 5� 
  

We need to note that magnitude (analytical result) of intrinsic rotation angle (Fig.5) is 

located into the interval 
2 2
4 4�� �	 � ��  ! "

 in compliance with actual range of arctangent-function: 

� �
� �

arctg
Ap t
Bq t

�
( )


 * +* +
, -

 

By this reason we ought to add 4  to � -value every rotational period. 
Thus, all explicit exact analytical solutions are found for torque-free angular motion of 

4-DOF � �, , , , , , ,p q r � � � � �  coaxial bodies system.  
These unperturbed generating solutions ((3.5), (3.2) and (3.4)) can be used for 

investigation of perturbed motion problems, such as the angular motion of DSSC with 
electromagnetic equipment in geomagnetic field, orbital motion of large DSSC taking into 
account influence of the gravity gradient, and also attitude dynamics DSSC in the perturbed 
environment and with chaotic behavior at presence of small external/internal disturbances.  
 

Conclusion
 
Dynamics of the torque-free coaxial bodies system (GS, DSSC) has been examined in the 

space of angular velocity (angular moment) components. The new analytical solutions for all 
angular moment components have been obtained in terms of Jacobi elliptic functions. Also 
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analytical solutions for Euler’s angles have been found. These solutions can be used for dual-
spin spacecraft and gyrostat-satellites attitude motion analysis and synthesis. 
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Highlights 

General dynamics of the free coaxial bodies system, gyrostat and dual-spin spacecraft is 
examined. 

New analytical solutions for angular moment components are obtained in Jacobi elliptic 
functions. 

Analytical solutions for Euler’s angles are found. 

The solutions can be used for dual-spin spacecraft and gyrostat-satellites motion analysis. 




